
1

Replicating Scalable Social Bot Detection
Through Data Selection

Cathy Guang, Katrina Li, Emanuel Linton, and Matthew Smith-Erb
Department of Computer Science, Carleton College

CS 400
Prof. Anna Rafferty
November 21, 2022

Abstract
Social bots on Twitter are accounts controlled by software that can manipulate
opinions in important events such as elections. In order to detect these bots, we
want to achieve both scalability and generalizability, to enable faster real-time
detection algorithms and to make the classification more robust to new bots that
are different from previous ones. We replicate the paper Scalable and
Generalizable Social Bot Detection through Data Selection (Yang, Varol, Hui,
Menczer 2020) and test the robustness of its results. The paper proposed an
approach for classification through training random forest models on just user
profile information and only on a subset of the available training data. Our results
align with Yang, et al. (2020) in that training on subsets of datasets with user
metadata improves classifier performance. We differ from their models as we
achieved better model performance than their top models using a fewer number of
datasets for training. These differences might be due to datasets differences,
feature calculation discrepancies, API call rate limit, and our relatively newer
sampling time for account features of certain datasets. Relationships across all
training and testing datasets are investigated to explain top models’ selections of
training subsets, and feature importance in the training datasets are analyzed.

Introduction
When you read a tweet, do you know that it might be sent by automated software rather

than a human? A portion of social media accounts are in fact bots, controlled by software and
created with all kinds of intentions. They manipulate opinions in important events, including
recent elections, and also spread extreme ideology or unreliable information (Deb et al. 2019).
Detecting social bots has two major challenges: access to streaming data with limited computing
resources, which makes scaling up hard for methods that inspect rich information on account’s
action; and detection of new bots that are different from old ones which are designed to evade



2

detection systems. In the paper Scalable and Generalizable Social Bot Detection through Data
Selection (Yang, Varol, Hui, Menczer 2020), a new bot detection framework is proposed that can
scale up to process the Twitter data stream in real time and generalize well to new accounts
outside the training data. The paper addresses the two challenges by training models on just user
profile information, which requires less computational power to be accessed in bulk, and also by
analyzing the feature space of different datasets and thus compiling subsets of them to build a
more robust classifier. The authors evaluate their models using cross-validation accuracy on
training data, generalization to unseen data, and consistency with the more feature-rich classifier
Botometer (Varol et al. 2017) on unlabeled data.

We replicate the original paper by following the same training and evaluation process. We
achieve similar results to the paper, but better performing top models than theirs using the same
ranking method. Our training datasets differ slightly from the datasets used by Yang, et al.
(2020), which might cause the differences in performance. Other factors that lead to different
results can be our feature calculation methods, the limited API call rate for Botometer and thus
differences in the Spearman’s r evaluation metric, and our relatively newer sampling time for
account features of certain datasets. Our results align with theirs in the sense that we both have
improved performance by selecting subsets of datasets for training, rather than using all available
data.

Bot detection model

Model Goals
We want our bot classifier to achieve the same generalizability and scalability of the

models presented by Yang et al. (2020). We train many instances of a model across different
subsets of datasets to identify the model which generalized best and performed well against our
metrics. These goals aim to improve on previous attempts at bot detectors. For instance,
Botometer (Varol et al. 2017) was a larger model that trained on seven specific datasets, each
containing over 1,000 features.

Data selection
We had seven training datasets at our disposal from Yang et al. (2020). However, each of

these datasets were collected in different ways, and thus represented various types of bot and
human accounts. Since each dataset has various levels of generalizability and distribution of
features per label, the model trained on all available data won’t necessarily perform the best.

We obtain the best bot classifier by training many models and then ranking them based on
evaluation metrics. We train 119 distinct models, each identified by the unique combination of



3

datasets that they were trained on. The number 119 comes from the size of the power set of the
seven data training sets (27 = 128) minus all subsets that don’t include both humans and bots
(nine total subsets). For instance, we never train a model on just the pronbots and political-bots
datasets because there are no human accounts in the data and so our model would never learn to
classify unseen data as humans. The hope is that one (or several) of the 119 models is trained on
the subset of data which best generalizes to other types of Twitter account data.

Random forest model
The model we use for classification is a random forest. This choice of model prevents

overfitting to the training data, which results in better generalizations for predicting unseen data.
The random forest classifier also helped us accomplish our goal of scalability, because it
performs well on our training data that only had twenty features per observations. The features
we train on are embedded in each account's Tweets. As such, capturing a single Tweet from an
account is enough to make a new classification. On the other hand, Botometer required 200
Tweets from a single account to make a classification. To be consistent with Yang et al. (2020),
we implement our models with the Python library scikit-learn (Pedregosa et al. 2011).

The overall structure of a random forest model is shown in Figure 1. A random forest
model consists of a set number of decision trees, in our case 100. A decision tree is built to
model a set of sequential and hierarchical decisions that ultimately lead to a final classification.
When a random forest is passed in a test instance, each decision tree will output a result of
whether the instance is a human or a bot based on the test instance’s features, and the random
forest model calculates the ultimate probability of the outcome by averaging the output of all of
its trees. We use the random forest model because we want to test robustness of the models from
the paper, it prevents overfitting of training data by averaging the prediction results from
different trees, and the model will give a higher predictive accuracy than a single decision tree.

Figure 1. Illustration of a random forest model.



4

Randomness is introduced to the model in two different methods. First, to train each
decision tree, the model selects a random bootstrapping of the data. Next, we randomly sample a
square root number of features for training each decision tree. Combined, they introduce
variation amongst the decision trees, which helps prevent overfitting to the base set of training
data. However, this randomness also causes variance in results between identical training
instances. Thus, for each of the 119 models, we train them five times, and average results.

Evaluating classifier effectiveness
We test our models on unseen datasets to evaluate their abilities to make generalized

predictions. To evaluate the models on a more diverse sample of accounts, we also test the
consistency of their classifications against a more feature-rich classifier Botometer (Varol et al.
2017). We additionally use cross-validation on training data for a full evaluation of model
performance.

For each trained model, we have it make predictions on accounts from the four unseen
test datasets. From these predictions, we calculate the AUC of each model for the test sets. The
AUC score is a value between 0 and 1 which represents the probability that a random positive
example is ranked higher than a random negative example. A model whose predictions are 100%
correct has an AUC score of 1.0, and a model that is randomly making predictions will have an
AUC score of 0.5. The higher the AUC score, the better the model performs on the testing
datasets.

For cross-validation, we apply the StratifiedShuffleSplit function from scikit-learn, which
helps split the dataset such that each split has approximately the same number of humans and
bots. The data is also shuffled each time before the split is done to ensure randomness in each
split. For each split, we train an instance of the model on one part of the data, and test the model
on the other part of the data. We repeat this process for five different splits, averaging their AUC
scores. Testing on a portion of the training datasets further ensures accuracy of the model’s
predictions.

We use Spearman’s Rank correlation coefficient to compare classifications made by our
models against Botometer. We created a dataset of 401 random users collected with the Twitter
streaming API in September of 2022. We use Botometer as a reference for getting bot scores for
the random accounts. The Spearman’s R value between -1 and 1 represents the correlation
between the relative bot scores assigned by Botometer and our models.

To fully measure the robustness of our models, the same model is made and tested four
more times, with all five instances of models’ AUC/Spearman’s R scores averaged. We combine
the scores of all the testing metrics by first finding the relative rank of how well each model
performed on each of the six metrics (ranking from 1 to 119). Then, for each model, we find the



5

product of its six relative ranks. The top/best performing model is the one with the lowest
product of ranks.

Datasets

Data source
We obtained twelve datasets used in the research by Yang et al. (2020). Seven datasets

were used for model training, and five were for model testing. We omitted a training dataset
named caverlee (Lee et al. 2011) used by Yang et al. (2020) because it was over a decade old,
had significantly more observations than other datasets, and Yang et al. (2020) still showed it
wasn’t present in any of their top models. Yang et al. (2020) chose seven of the datasets for
training because they were datasets that an alternate model named Botometer (Varol et al. 2017)
was first trained on.

Table 1. All the datasets we used from (Yang et al. 2020) for training and testing.

Datasets Usage # Bots # Humans

varol training 665 1441

cresci-17 training 6543 3474

pronbots training 17882 0

celebrity training 0 5918

vendor-purchased training 1087 0

botometer-feedback training 138 380

political-bots training 62 0

botwiki testing 698 0

verified testing 0 1987

midterm-18 testing 42446 8092

gilani-17 testing 1090 1394

cresci-rtbust testing 353 340

We will give a synopsis of how each dataset was collected, and what domain of Twitter
they came from. The dataset varol was created by manually labeling accounts which were



6

gathered by sampling Tweets that fell into each decile of bot score given by Botometer (Varol et
al. 2017). The intention of sampling from each decile is to have a diverse set of data which
represents a range of bot and human behavior. Each bot account in cresci-17 fell into one of three
categories: social spambots, traditional spambots, and fake followers (Cresci et al. 2017).
However, we filtered out the fake followers sub-dataset to try to better match the number of
observations listed by Yang et al. (2020) (discrepancies between our datasets are recounted in the
discussion). There are only bots in pronbots, and they were identified by them sharing scam sites
(Yang et al. 2019). The observations in celebrity are a selection of celebrity Twitter accounts.
The dataset vendor-purchased contains bots which were obtained by researchers buying fake
followers. There are both human and bot accounts in botometer-feedback, which were collected
by manually labeling classifications flagged for feedback by Botometer users. The dataset
political-bots contains just 62 bot accounts involved in Massachusetts politics. The accounts in
botwiki came from the website botwiki.org, and were filtered down to only contain active Twitter
bot accounts (Yang et al. 2020). There are only humans in the verified dataset, which was created
by using Twitter’s streaming API and filtering out non-verified accounts. Yang et al. (2020) also
manually labeled the data in midterm-18, which came from accounts that were active in
discourse surrounding the 2018 U.S. midterm elections. The dataset gilani-17 consists of humans
and bots that were sampled with Twitter’s streaming API, and were grouped into different
numbers of followers (Gilani et al. 2019). There are an almost equal number of humans and
accounts in cresci-rtbust. It was created by manually labeling Italian accounts that retweeted in
June of 2018 (Mazza et al. 2019).

Most of the datasets consisted of a labeled .tsv where one column was a Twitter account
ID, and the other column labeled the account as a bot or human. Ten of the datasets also came
with a JSON file which contained eight user metadata features (see Table 2) that we used to train
the model. We combined the JSON information with the labeled .tsvs into a usable format by
having each observation be a row in a CSV file. One of the datasets, cresci-17 (Cresci et al.
2017), consisted of seven individual CSV files, each already containing the eight metadata
features. Thus, we combined all of these into a single file representing the observations of
cresci-17. Another training set, varol (Varol et al. 2017), didn’t contain any metadata features,
and so we made a Twitter API call for each account to collect this information.

Feature Generation
Besides eight raw features, we derive twelve more features based on the metadata

features and three more account features: the age of the account, screen name (handle) of the
account, and chosen name of the account. We hypothesize that most of the twenty features would
matter to the bot detection. Each decision tree in the model will take into consideration four
features and have a relatively efficient height. Including more than twenty features in the model
would slow down the training and detection process.



7

One of our derived features was called screen_name_likelihood. This feature measures
how similar that the observed screen_name feature is to all the observed human screen_names.
Therefore, in order to calculate this, we did the following steps:

1. Gather all the screen_names of human accounts from all training datasets.
2. For each screen_name as a string of characters (letters or digits or the underscore), create all

bigrams of two consecutive characters in a list. For example, the string ‘data’ would break down
to [‘da’,’at’,’ta’].

3. Count the appearance of all bigrams. Note that we are case sensitive.
4. In the meantime, count the appearance of all single characters.
5. Apply add-one smoothing. That is, for each possible bigram, add one to the count. This way, a

bigram that never appears in any human screen_name (like ‘xy’) will be counted once. Change
the count of single characters correspondingly to match/reflect the counts of bigrams.

6. Normalization: calculate the probability of appearance of each single character by dividing the
count of the character by the sum of count of all characters. Similarly, calculate the probability of
appearance of each bigram by dividing the count of the bigram by the sum of count of all
bigrams.

7. Calculate the conditional probability of one character c’ after another c by dividing the
probability of cc’ by the probability of c.

8. Lastly, calculate the likelihood of a screen_name, which represents how likely it is for an account
with a specific screen_name to become a human account. This likelihood should be affected by
the bigram. That is, take into account how likely it is for each character in the screen_name to
appear after its previous. To do this, we multiply the conditional probabilities of all its bigrams
and then apply the (length of screen_name-1) th root to increase the likelihood of longer
screen_names in comparison to shorter ones (Feng et al. 2021).

After the cleaning process, we have thirteen CSV files, seven training sets and five
testing sets, each containing labeled observations with twenty features. See table 2 for the full list
of features and table 1 in the appendix for an example row with derived features.

Table 2. The list of all raw and derived features from datasets.

Note. From “Scalable and Generalizable Social Bot Detection through Data Selection,” by Yang, K.-C., Varol, O., Hui, P.-M., &
Menczer, F., 2020, Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 1096-1103.
https://doi.org/10.1609/aaai.v34i01.5460



8

To evaluate our models, we found the correlation in how they classified unseen accounts
to how a previously trained model named Botometer (Varol et al. 2017) classified them. We used
the Python package Tweepy (Harmon et al.) to first sample several hundred Twitter accounts that
were making live Tweets at the time of data collection. Next, we made requests to Botometer’s
API to find its overall bot score assigned to each account using the screen names of accounts. We
used Botometer to score a total of 401 unseen accounts. We had to further derive the features in
Table 2 for each sampled account so that we could assign bot scores to these accounts in order to
classify them using our models as well.

Results

Top models
Table 3 below shows the AUC scores calculated by the paper after their training and

testing. We then show a comparative table that has our results compared to results by (Yang, et
al. 2020) in Table 4. From our training, the paper’s purported top three models are ranked low in
our testing with ranks 90, 91, and 84. We also used fewer subsets in our top models than theirs –
while they always included varol, cresci_17, celebrity, and botometer for training, we use
cresci_17 and botometer in only three of our top five models training. We also don’t use political
in any of the top five models, while Yang, et al. (2020) uses it in their top model training.

Table 3. AUC scores (from Yang et al. (2020)) on unseen datasets, five-fold cross validation, and
correlation with Botometer for selected candidate models. M246 is trained on all data, shown for
comparison. Their bolded values indicate metrics significantly better than the baseline.

Note. From “Scalable and Generalizable Social Bot Detection through Data Selection,” by Yang, K.-C., Varol, O., Hui, P.-M., &
Menczer, F., 2020, Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 1096-1103.
https://doi.org/10.1609/aaai.v34i01.5460



9

Table 4. AUC scores of our top models and their top selections, tested on the same metric.

Datasets analysis
We then perform further investigation on how datasets relate to each other. We want to

see whether human and bot classes are consistent across different datasets, which is visualized
through Figure 2 by training on one dataset and testing on another. Figure 2 maps the
cross-dataset AUC score using random forest classifiers. In the heatmap analysis (Figure 2),
when the AUC score is high, it indicates that the datasets are more consistent with each other.
When AUC is below 0.5, it suggests that the training and test datasets have contradictory labels.
To enable training on single-labeled datasets, we combined datasets that have only bots or
humans with the same proportion of the other class from the midterm dataset.



10

Figure 2. Heatmap for cross-dataset AUC using random forest classifiers. Training on one
dataset and testing on another.

Based on this heatmap showing cross-datasets AUC, we can see that training on political
generates bad models when tested on most other datasets. The relatively small dataset size
contributes to the bad performance, but the AUC scores are generally low when we do testing on
political as well. The low scores for political indicates that we shouldn’t use it for training as it
contradicts with most datasets. This aligns with our top model’s datasets selection, which all omit
political.

Of the three top models originally presented by Yang et al. (2020), all were trained on
varol, cresci_17, celebrity, and botometer-feedback. However, out of our top 25 models, none
were trained on both varol and cresci_17 at the same time. Likewise, varol and celebrity were
never trained on the same top 25 models. Interestingly, the conditional probability that given one
of our 25 models was trained on botometer-feedback, it was also trained on varol, was only 0.2.
See Figure 7 in appendix for the full list of conditional probabilities. These probabilities
demonstrate that the composition of the training datasets of not just our top 5 models, but even
our top 25 models, differ drastically from the top models in Yang et al. (2020).

As we discuss later in greater detail, some of the discrepancies between our models may
be due to systematic differences between our datasets and their datasets. For instance, our models



11

have a higher average AUC scores when tested on cresci-rtbust compared to all of the models of
Yang et al. (2020).

Figure 3. Left: The AUC scores of the 247 models trained by Yang et al. (2020) and tested on
cresci-rtbust (a set of Italian retweets). The dotted blue line is Botometer’s score on cresci-rtbust. Right:

The AUC scores of our 119 models tested on cresci-rtbust.
Note. From “Scalable and Generalizable Social Bot Detection through Data Selection,” by Yang, K.-C., Varol, O., Hui, P.-M., &
Menczer, F., 2020, Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 1096-1103.
https://doi.org/10.1609/aaai.v34i01.5460

Hyperparameters analysis
The choice of hyperparameters can influence the performance of models. Yang et al.

(2020) only gave the number of decision trees present in their models, and didn’t disclose any
other hyperparameters they used. Our goal here is to analyze how hyperparameters specific to
random forest models impact the generalizability and accuracy of our models.

In our analysis, we test four hyperparameters: criterion, max_depth, class_weight, and
warm_start. The results of this analysis are obtained by averaging the AUC scores of each
metric, of which there are 119, then averaging the average scores of each metric, of which there
are six. This is how the scalar performance of all models in the model set are determined.

To determine the top 30 models in the model set rather than all 119, the models are
ranked from best to worst and only the top 30 scores are averaged the same way, averaging the
AUC scores of each metric, then averaging the average score of each metric, except with just the
top 30 models.



12

Figure 4. The average AUC scores for every model set with specified hyperparameters, across all 119
models and the top 30 models.

● cw=bs -> class_weight=”balanced_subsample”
● md -> max_depth
● crt=ent -> criterion = “entropy”
● ws=t -> warm_start = True

Based on our current analysis, the hyperparameter/setting with the best positive influence
on the top 30 models is the class_weight=“balanced_subsample,” which increases the total score
by 0.0006 points over the base model in the same metric, but does worse in the overall
performance, with a 0.0029 reduction in score. This means the effect the hyperparameter
class_weight=“balanced_subsample” has on all the models is negligible.

SHAP analysis
We also replicate the SHAP analysis that the original paper performed. With its fullname

as SHapley Additive exPlanations, SHAP analysis calculates Shapley values with a method from
coalitional game theory that assumes each feature value of an instance is a “player” in a game
where the output is the payout. SHAP measures how each feature matters in their contribution to
the output. Here we use treeSHAP, which can be used for the estimation of feature importance
for tree-based models (Molnar, 2022).

We perform SHAP analysis on our best model as well as M196, the best model from
Yang et al. (2020). See Figure 5 of the appendix for full results. The order of importance of
features turns out to be very different with our best model and our M196, as well as our M196



13

with their M196. This shows that we were not able to fully replicate the original paper. However,
our results are sustained: the effects of each feature are relatively consistent across different
models. This can be seen by comparing the shapes of each feature in our best model and our
M196. Only tweet_freq and description_length are significantly different. In comparing our
M196 with the original paper’s M196, we find that shapes of almost all of the features differ and
the friends_count, default_profile, statuses_count, and description_length differ significantly.
This result further shows that we did not manage to replicate the model and explains why the
AUC scores also shifted.

Discussion

Robustness of our results
Although our best models are not trained on the same training datasets as the original

paper’s best models, and we achieved a different model using the dataset combination that
produced their best models, our replication resembles the majority of results from the original
paper. One of the important conclusions shared between the original paper and our results shows
that the models that produce the best results are not trained on the combination of all datasets.
Indeed, our analyses performed on training datasets suggest that some datasets are contradictory
to each other (the datasets in the original paper also share this quality). Therefore, including both
of them will worsen the model.

Challenges in replication
As shown in our results, we are unable to precisely replicate several parts of the authors’

original paper. Though it’s difficult to determine the exact impact, we know there are several
discrepancies between our datasets, despite them coming from the same source. One big
difference is in the training set cresci-17. We calculate there to be 3,474 humans and 6,543 bots,
which aligns with the paper that was published alongside the dataset (Cresci et al. 2017).
However, the purported number of humans in (Yang et al. 2020) was 2,764 and the number of
bots was 7,049. No combination of the eight .CSVs in (Cresci et al. 2017) lead to a total of 7,049
bots.

Our version of varol is also different in both the number of observations and the feature
values themselves. Since we have to make API calls to Twitter several years after the publication
of ( Yang et al. 2020), some accounts are deactivated or banned. We go from 1,495 humans in
their dataset to 1,441 in ours, and 733 bots in theirs to 665 humans in ours. The fact that only 68
of the bot accounts are banned or deactivated may suggest that some of them could have been
mislabeled in the manual annotation process of the original dataset. Similarly, the exact feature



14

values of each observation would differ because we gather them at a later date from Yang et al.
(2020).

The rate limit of Twitter’s API and Botometer’s API both present issues in our
replication. Although it is only one of twenty features, we derive screen_name_likelihood from a
different set of data. We train our language bigram model on the 11,213 human accounts in the
training data, whereas the researchers were able to train their language model on over 2 million
account names. In the construction of the data used to test the correlation between our models
and Botometer, Yang et al. (2020) sampled 100,000 Twitter accounts. We are only able to
classify 401 accounts from the live sample of Tweets due to Botometer’s API rate limits.

Lastly, the researchers did not specify their hyperparameters of their random forest
models. The only specifics they wrote was that they used 100 trees in the forest and implemented
the models with the Python package scikit-learn (Pedregosa et al. 2011). One hundred trees (or
estimators) is the default in scikit-learn, so it is impossible to know if the researchers used any
non default hyperparameters at all. The secrecy of the researchers could be linked to them
publishing their classifier, now titled “BotometerLite”, as a premium API endpoint, costing
$50/month (Menczer, 2020). Without access to the authors’ exact datasets and their model
hyperparameters, we have to work within our limitations by making many assumptions. This
made it difficult to confidently replicate specific parts of Scalable and Generalizable Social Bot
Detection through Data Selection.

Future directions
Apart from the various types of analyses we performed, several further directions arise

from this topic. A possible future direction is to figure out a more effective and elastic way to
select data from datasets. For example, if we decide to exclude data, we might not need to
discard a whole dataset. Perhaps we can divide data entry-wise/instance-wise instead of
dataset-wise. In addition, the current data selection method we followed is done by training all of
the models and evaluating them to find out the best ones. This is relatively time consuming as it
takes an exponential amount of time to train the models with respect to the number of datasets. Is
it possible to determine whether to include or exclude some training instances in the process of
training, such that all the selected training instances would output a good model?

In our experiment, we do not try any datasets besides what is mentioned in the original
paper. We believe that we can better test the robustness of a random forest model and this data
selection method if we can introduce new datasets. We also wonder whether it is possible to
come up with a better ranking algorithm that is more holistic across all metrics, since multiplying
the ranks for each metric only favors the models that do extremely well in a subset of the
metrics. In general, the goal is to find a model that performs great in most if not all of the metrics
and does not significantly fail in any metric.



15

Last but not least, bot detection is important, so we generally encourage further research
and training of structurally improved models that also possibly takes in more recent training
datasets.

Conclusion
In summary, we successfully replicate the procedure of training all models on every

possible subset of datasets, applying cross-validation, calculating each of their performances on
every test dataset, and performing analyses on the top models. We find that the resulting top
models are different from the original papers’ models, and further directions of investigations are
raised.



16

References
Cresci, S., Pietro, R.D., Petrocchi, M., Spognardi, A., & Tesconi, M. (2017). The Paradigm-Shift of Social
Spambots: Evidence, Theories, and Tools for the Arms Race. Proceedings of the 26th International
Conference on World Wide Web Companion.

Deb, A., Luceri, L., Badaway, A., & Ferrara, E. (2019, May). Perils and challenges of social media and
election manipulation analysis: The 2018 us midterms. In Companion proceedings of the 2019 world wide
web conference (pp. 237-247).

Feng, S. (n.d.). TwiBot-20: A comprehensive twitter bot detection benchmark. Retrieved November 16,
2022, from https://arxiv-export-lb.library.cornell.edu/pdf/2106.13088

Gilani, Z., Kochmar, E., & Crowcroft, J. (2017, July). Classification of twitter accounts into automated
agents and human users. In Proceedings of the 2017 IEEE/ACM international conference on advances in
social networks analysis and mining 2017 (pp. 489-496).

Harmon, Roesslein, J., & other contributors. Tweepy [Computer software].
https://doi.org/10.5281/zenodo.7259945

Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2008). The Elements of Statistical Learning (2nd
ed.). Springer. ISBN 0-387-95284-5

Lee, K., Eoff, B., & Caverlee, J. (2021). Seven Months with the Devils: A Long-Term Study of Content
Polluters on Twitter. Proceedings of the International AAAI Conference on Web and Social Media, 5(1),
185-192. https://doi.org/10.1609/icwsm.v5i1.14106

Mazza, M., Cresci, S., Avvenuti, M., Quattrociocchi, W., & Tesconi, M. (2019, June). Rtbust: Exploiting
temporal patterns for botnet detection on twitter. In Proceedings of the 10th ACM conference on web
science (pp. 183-192).

Menczer, F. (2020, September 1). Botometer v4. CNetS. Retrieved November 18, 2022, from
https://cnets.indiana.edu/blog/2020/09/01/botometer-v4/

Molnar, C. (2022, November 12). Interpretable machine learning. 9.6 SHAP (SHapley Additive
exPlanations). Retrieved November 16, 2022, from
https://christophm.github.io/interpretable-ml-book/shap.html

Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.

Varol, O.; Ferrara, E.; Davis, C. A.; Menczer, F.; and Flammini, A. 2017. Online human-bot interactions:
Detection, estimation, and characterization. In Proc. Intl. AAAI Conf. on Web and Soc. Media (ICWSM).



17

Yang, K. C., Varol, O., Davis, C. A., Ferrara, E., Flammini, A., & Menczer, F. (2019). Arming the public
with artificial intelligence to counter social bots. Human Behavior and Emerging Technologies, 1 (1),
48–61.

Yang, K.-C., Varol, O., Hui, P.-M., & Menczer, F. (2020). Scalable and Generalizable Social Bot
Detection through Data Selection. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01),
1096-1103. https://doi.org/10.1609/aaai.v34i01.5460



18

Appendix
Figure 1. Our calculated AUC scores and Spearman’s r value for the test metrics on each model.

Figure 2. Top: Yang et al. (2020) figures showing the frequency of bot scores and F1 score for
their top model on cross-validation data and cross-domain (testing) datasets. The threshold
(vertical dotted line) denotes the bot threshold which maximizes the F1 score. Bottom: We
recreated the figures using the model trained on the same data as their top model.
(M196/M1101011). Note that we have a probability density plot instead of frequency, so the y
axis is different, but their relative shapes are still comparable.



19

Figure 3. We calculated the bot scores, F1 scores, and thresholds for our top model (M0101000).



20

Figure 4. SHAP analysis scatterplots. Each point is a test instance. The more left it is, the more
human-like the model predicts it is. Vice versa. The redder it is, the higher the feature value it is.
Vice versa.

Figure 4.1.1. trained on cresci-17, tested on pronbots.

Figure 4.1.2. trained on cresci-17, tested on celebrity.



21

Figure 4.2.1. trained on midterm-18, tested on pronbots.

Figure 4.2.2. trained on midterm-18, tested on celebrity



22

Figure 5. SHAP analysis on M196 on all 4 test dataset

Figure 6. SHAP analysis on M0101000 (our best model) on all 4 test dataset



23

Figure 7. The conditional probabilities that when given a certain data set (row) used to train a top
25 model, another data set (column) was also used to train the same model.

Table 1. Two example rows of a dataset used for training with all twenty features and label
is_bot.

statuses
_count

followers
_count

friends_c
ount

favourite
s_count

listed_co
unt

default_p
rofile

profile_u
se_back
ground_i
mage verified

tweet_fre
q

followers
_growth_
rate

friends_g
rowth_rat
e

39411 651238 665 13561 1761 FALSE FALSE TRUE
0.466583

3527
7.709949

239
0.007872
876343

41187 265102 943 11365 783 FALSE FALSE TRUE
0.535609

7169
3.447476

319
0.012263

09183

…
favourites
_growth_r
ate

listed_gro
wth_rate

followers_
friends_rat
io

screen_na
me_length

num_digit
s_in_scre
en_name

name_len
gth

num_digit
s_in_nam
e

descriptio
n_length

screen_na
me_likelih
ood is_bot

0.1605474
828

0.0208483
2367

979.30526
32 11 0 11 0 117

0.0023222
66614 0

0.1477943
145

0.0101823
9756

281.12619
3 13 0 19 0 40

0.0051855
56779 0


